Категории

Частотная модуляция формула

Теория: радиоволны, модуляция и спектр.

Лекция 5. Фазовая и частотная модуляция. Спектры модулированных колебаний

alexxerm13 ноября 2012 в 18:55

Теория радиоволн: аналоговая модуляция

Метки:


Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
В предыдущих статьях мы познакомились с радиоволнами и антеннами:

Давайте ближе познакомимся с модуляцией радиосигнала.

В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

  • Амплитудная модуляция
  • Амплитудная модуляция c одной боковой полосой
  • Частотная модуляция
  • Линейно-частотная модуляция
  • Фазовая модуляция
  • Дифференциально-фазовая модуляция


Амплитудная модуляция

При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.



Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции — это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Спектр АМ



Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У — амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра.
В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая — несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

Амплитудная модуляция с одной боковой полосой


В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.



Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:



При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

Частотная модуляция


Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.



а) — несущая частота, б) модулирующий сигнал, в) результат модуляции

Наибольшее отклонение частоты от среднего значения, называется девиацией.
В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

Спектр при частотной модуляции выглядит следующим образом:



Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
Различают широкополосную и узкополосную ЧМ модуляцию.
В широкополосной — спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
Спектры широкополосной и узкополосной ЧМ представлены ниже



Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Основные преимущества ЧМ, перед АМ — энергоэффективность и помехоустойчивость.

Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.





Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
ЛЧМ находят применение в радиолокации.

Фазовая модуляция

В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.



Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

Дифференциально-фазовая манипуляция

В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».



Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.
AdBlock похитил этот баннер, но баннеры не зубы — отрастут

Подробнее
Реклама
AdBlock похитил этот баннер, но баннеры не зубы — отрастут

Подробнее
Реклама
AdBlock похитил этот баннер, но баннеры не зубы — отрастут

Подробнее
Реклама
Источник: https://habrahabr.ru/post/158493/

Частотная модуляция

Обратимся к модулированным сигналам, полученным путем изменения по закону передаваемого сообщения в несущем колебании частоты w0, или начальной фазы j0. Поскольку в обоих случаях аргумент гармонического колебания y(t) = w0t + j0 определяет мгновенное значение фазового угла, такие радиосигналы получили название сигналов с угловой модуляцией. Если в несущем колебании изменяется частота w0, то имеем дело с частотной модуляцией (ЧМ), если же изменяется фаза j0 – фазовой модуляцией (ФМ).

Частотная модуляция. При частотной модуляции несущая частота w(t) связана с модулирующим сигналом e(t) зависимостью:

w(t) = w0 + kч e(t) (5.1)

здесь kч - размерный коэффициент пропорциональности между частотой и напряжением, рад.

Рассмотрим однотональную частотную модуляцию, когда модулирующим сигналом является гармоническое колебание e(t) = E0cosWt, у которого для упрощения начальная фаза q0 = 0. Пусть также начальная фаза несущего колебания j0 = 0. При необходимости начальные фазы q0 и j0 легко могут быть введены в окончательные соотношения. Полную фазу ЧМ – сигнала в любой момент времени t определим путем интегрирования частоты, выраженной через формулу (5.1):

, (5.2)

где wдч = - максимальное отклонение частоты от значения w0, или девиация частоты при частотной модуляции.

Отношение mч = wдч/W = kч E0/W, (5.3)

являющееся девиацией фазы несущего колебания, называют индексом частотной модуляции.

С учетом (5.2) и (5.3) ЧМ – сигнал запишется в следующем виде:

. (5.4)

На рис. 5.1 представлены временные диаграммы соответственно несущего колебания uн(t) и модулирующего сигнала e(t) с начальными фазами j0 = q0 = 90o , и полученный в результате процесса частотной модуляции ЧМ – сигнал uчм(t) . Нетрудно заметить, что по формуле ЧМ-сигнал напоминает сжатые и растянутые меха русской гармошки.

Фазовая модуляция. В ФМ – сигнале полная фаза несущего колебания изменяется пропорционально модулирующему напряжению

y (t) = w0t + kфe(t), (5.5)

где kф - размерный коэффициент пропорциональности, рад/В.

Рис. 5.1 Частотная однотональная модуляция:

а – несущее колебание; б – модулирующий сигнал; в – ЧМ – сигнал

При однотональной модуляции фаза несущего колебания:

y (t) = w0t + kфE0cosWt, (5.6)

Из (5.6) следует, что, как и в случае частотной модуляции, полная фаза несущего колебания изменяется по гармоническому закону. Максимальное отклонение фазы несущего колебания от начальной фазы характеризует индекс фазовой модуляции

mф = kфE0. (5.7)

Подставляя формулы (5.5) и (5.6) в (4.1), запишем ФМ - сигнал

. (5.8)

Дифференцирование формулы (5.6) дает частоту ФМ – сигнала

w(t) = w0 - mф W sinWt = w0 - wдфsinWt, (5.9)

где wдф = mфW = kфE0W - максимальное отклонение частоты от значения несущей w0, т. е. девиация частоты при фазовой модуляции.

Выражения (5.4), (5.8) показывают, что при однотональной угловой модуляции нельзя определить, является ли сигнал частотно или фазо-модулированным. Различия между этими видами однотональной модуляции проявляется только при изменении амплитуды Е0или частоты W моду-лирующего сигнала e(t).

В случае частотной модуляции девиации частоты wдч пропорциональна амплитуде Е0 и не зависит от частоты W модулирующего сигнала e(t) = E0cosWt. Индекс же модуляции mч прямо пропорционален амплитуде Е0 и обратно пропорционален частоте W модулирующего сигнала. При фазовой модуляции девиации частоты wдф изменяется пропорционально амплитуде Е0 и частоте модулирующего сигнала. Индекс модуляции mф пропорционален амплитуде Е0 и нее зависит от частоты W модулирующего сигнала.

Спектр ЧМ – сигнала при однотональной модуляции.Используя тригонометрические преобразования, запишем соотношение (5.4) следующим образом:

=

= Uнcos(msinWt)cosw0t - Uнsin(msinWt)sinw0t. (5.10)

Проанализируем выражение (5.10) отдельно для малых (m<< 1) и больших ( m>1 ) индексов модуляции.

Спектр ЧМ – сигнала при m<< 1. В этом случае имеют место приближенные равенства

cos(msinWt) » 1; sin(msinWt) » msinWt. (5.11)

Подставив (5.11) в (5.10), получим

uЧМ(t) = Uнcosw0t - UнmsinW sinw0t =

+ Uнcosw0t + (mUн/2)cos(w0 + W)t - (mUн/2) cos(w0 - W)t. (5.12)

Рис.5.2. Диаграммы ЧМ – сигнала при m << 1:

а – спектральная; б - векторная

Сравнение соотношений (5.12 ) и (4.6) показывает, что спектр ЧМ – сигнала аналогичен спектру АМП – сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (w0 + W) и (w0 - W). Индекс модуляции m играет здесь ту же роль, что и коэффициент амплитудной модуляции М. Единственное и принципиальное отличие - знак минус перед нижней боковой составляющей в формуле для ЧМ – сигнала, который характеризирует поворот ее фазы на 1800 , что аналитически приводит к превращению АМП – сигнала в ЧМ – сигнал.

На рис.5.2,а представлена спектральная диаграмма для ЧМ – сигнала при индексе модуляции m << 1. Отметим, что ширина спектра в данном случае равна 2W, как и при амплитудной модуляции.

На векторной диаграмме рис.5.2, б показано, как изменение фазы нижней боковой составляющей на 1800 (вектор АД) влияет на вектор результирующего колебания ОВ. Направление вектора АД нижней боковой составляющей при АМ – сигнале обозначено штриховой линией. Изменение направления этого вектора на 1800 не влияет на вектор модуляции АВ, который всегда перпендикулярен вектору несущей ОА. Вектор результирующего колебания ОВ изменяется как по фазе, так и по амплитуде, т.е. с течением времени «качается» вокруг центрального положения. Однако при m<< 1 изменения амплитуды настолько малы, что ими можно пренебречь и модуляцию рассматривать как чисто фазовую.

Теоретический спектр ЧМ – сигнала (аналогично и ФМ – сигнала) бесконечен по полосе частот, однако в реальных случаях он ограничен. Дело в том, что начиная с номера порядка n > m+1 , значения функций Бесселя становится весьма малыми. Поэтому считается, что практическая ширина спектра радиосигналов с угловой модуляцией

Dwум = 2(m +1)W.

Рис. 5.3. Спектр ЧМ – сигнала.

ЧМ – и ФМ – сигналы, применяемые на практике, имеют индекс модуляции m >>1, поэтому

Dwум = 2mW = 2wд.

Таким образом, полоса частот, занимаемая сигналами с однотональной частоты модуляцией, равна удвоенной величине девиации частоты и не зависит от частоты модуляции. Спектр сигналов с угловой модуляцией при негармоническом модулирующем сигнале определить достаточно трудно. Но он всегда сложнее, чем спектр АМ – сигнала при том же модулирующем сигнале. Ширина его спектра также значительно больше, чем при амплитудной модуляции.

Примерная структура спектра ЧМ– сигнала при индексе модуляции m =3 показана на рис. 5.3.

Следует отметить, что радиосигналы с частотой и фазовой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1.Поскольку при угловой модуляции амплитуда модулированных колебании не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитуды модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к искажению передаваемого сообщения.

2.Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает в этом случае при неизменной колебательной мощности.

Литература: 1[11-38], 2[74-103]; 6[ 46-61].

Контрольные вопросы:

1.Как осуществляется частотная модуляция?

2.Покажите индекс частотной модуляции.

3.Что такое девиация частоты?

4. Покажите индекс фазавой модуляции.

5. Нарисуйте вид колебания однотональной частотной модуляции.

6. Как изменяется индекс модуляции с ростом частоты?

7. Покажите спектр частотной модуляции.


⇐ Предыдущая123Следующая ⇒




Дата публикования: 2014-10-18; Прочитано: 8001 | Нарушение авторского права страницы



studopedia.org - Студопедия.Орг - 2014-2018 год.(0.004 с)...
Источник: https://studopedia.org/1-10811.html

Документ не найден

Частотная модуляция

При частотной модуляции (frequency modulation; FM) мгновенное значение несущей частоты ω(t) связано с модулирующим сигналом e(t) зависимостью (15)

здесь kЧ — размерный коэффициент пропорциональности между частотой и напряжением, рад/(В-с).

Полную фазу ЧМ-сигнала в любой момент времени t определим путем интегрирования мгновенной частоты, выраженной через формулу (15),

 
 

(16)

- максимальное отклонение частоты от значения ω0, или девиация частоты (frequency deviation) при частотной модуляции;

— максимальное отклонение от текущей фазы ω0t или девиация фазы несущего колебания называется индексом частотной модуляции (index of frequency modulation). Данный парамер определяет интенсивность колебаний начальной фазы радиосигнала.

С учетом полученных соотношений (1) и (16) частотно-модулированный сигнал запишется в следующем виде:

Спектр ЧМ-сигнала при однотональной модуляции.Преобразуем полученное выражение (17)

Спектр ЧМ-сигнала при m«1 (такую угловую модуляцию называют узкополосной). В этом случае имеют место приближенные равенства: (18)

Подставив формулы (18) в выражение (17), после несложных математических преобразований получим (при начальных фазах модулирующего и несущего колебаний θ0 = 0 и φ0 = 0): (19)

Видим, что по аналитической записи спектр ЧМ-сигнала при однотональной модуляции напоминает спектр АМ- сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (ω0+ Ω) и (ω0- Ω) причем и амплитуды их рассчитываются аналогично (только вместо коэффициента амплитудной модуляции М в формуле для ЧМ-сигнала фигурирует индекс угловой модуляции m). Но есть и принципиальное отличие, превращающее амплитудную модуляцию в частотную, знак минус перед одной из боковых составляющих.

 
 

 
 

Спектр ЧМ-сигнала при m> 1. Из математики известно (20) (21)

 

где Jn(m) — функция Бесселя 1 -го рода n-го порядка.

В теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой формулой (22)

Ряды (20) и (21) подставим в формулу (17), а затем заменим произведение косинусов и синусов полусуммами косинусов соответствующих аргументов. Тогда, с учетом (22), получим следующее выражение для ЧМ-сигнала (23)

Итак, спектр ЧМ-сигнала с однотональной модуляцией при индексе

модуляции m > 1 состоит из множества высокочастотных гармоник: несущего колебания и бесконечного числа боковых составляющих с частотами ω0+ nΩ. и ω0-nΩ, расположенными попарно и симметрично относительно несущей частоты ω0.

При этом, исходя из (22), можно отметить, что начальные фазы боковых колебаний с частотами ω0+ nΩ. и ω0-nΩ совпадают, если m — четное число, и отличаются на 180°, если m — нечетное. Теоретически спектр ЧМ- сигнала (так же и ФМ-сигнала) бесконечен, однако в реальных случаях он ограничен. Практическая ширина спектра сигналов с угловой модуляцией

ЧМ- и ФМ-сигналы, применяемые на практике в радиотехнике и связи, имеют индекс модуляции m>> 1, поэтому

 
 

Полоса частот ЧМ-сигнала с однотональной модуляцией равна удвоенной девиации частоты и не зависит от частоты модуляции.

Сравнение помехоустойчивости радиосистем с амплитудной и угловой модуляцией. Следует отметить, что радиосигналы с угловой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1. Поскольку при угловой модуляции амплитуда модулированных колебаний не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитудной модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к заметному искажению передаваемого сообщения.

2. Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает при неизменной средней мощности колебаний.

 


12





Дата добавления: 2016-06-02; просмотров: 574;


ПОСМОТРЕТЬ ЕЩЕ:

Источник: http://helpiks.org/8-26361.html
Еще по теме: